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ABSTRACT

Objective: To examine the environmental life cycle
from poppy farming through to production of 100 mg
in 100 mL of intravenous morphine (standard infusion
bag).

Design: ‘Cradle-to-grave’ process-based life cycle
assessment (observational).

Settings: Australian opium poppy farms, and facilities
for pelletising, manufacturing morphine, and sterilising
and packaging bags of morphine.

Main outcome measures: The environmental
effects (eg, CO» equivalent (‘CO, €’) emissions and
water use) of producing 100 mg of morphine. All
aspects of morphine production from poppy farming,
pelletising, bulk morphine manufacture through to final
formulation. Industry-sourced and inventory-sourced
databases were used for most inputs.

Results: Morphine sulfate (100 mg in 100 mL) had a
climate change effect of 204 g CO, e (95% Cl 189 to
280 g CO, e), approximating the CO, e emissions of
driving an average car 1 km. Water use was 7.8 L
(95% Cl 6.7—to 9.0 L), primarily stemming from
farming (6.7 L). All other environmental effects were
minor and several orders of magnitude less than CO,
e emissions and water use. AlImost 90% of CO, e
emissions occurred during the final stages of 100 mg
of morphine manufacture. Morphine’s packaging
contributed 95 g CO, e, which accounted for 46% of
the total CO, e (95% Cl 82 to 155 g CO, e). Mixing,
filling and sterilisation of 100 mg morphine bags
added a further 86 g CO, e, which accounted for
42% (95% Cl 80 to 92 g CO, ). Poppy farming

(6 g CO, e, 3%), pelletising and manufacturing

(18 g CO, e, 9%) made smaller contributions to CO,
emissions.

Conclusions: The environmental effects of growing
opium poppies and manufacturing bulk morphine were
small. The final stages of morphine production,
particularly sterilisation and packaging, contributed to
almost 90% of morphine’s carbon footprint. Focused
measures to improve the energy efficiency and sources
for drug sterilisation and packaging could be explored
as these are relevant to all drugs. Comparisons of the
environmental effects of the production of other drugs
and between oral and intravenous preparations are
required.

Strengths and limitations of this study

= The environmental footprint of individual identi-
fied drugs is unclear.

= We completed a life cycle assessment (LCA) of
an identified drug that has worldwide use. The
total environmental effects of producing 100 mg
of packaged morphine (for intravenous usage)
were similar to or less than those of travelling
1km in a standard car in all of the domains
examined, including the carbon footprint, toxicity
and water use. Nevertheless, when considering
worldwide morphine usage, the environmental
effects become significant.

= We found that the final stages of production
formed 90% of morphine’s carbon footprint, and
packaging alone contributed almost 50%. In
contrast, poppy farming and manufacture of bulk
morphine were minor contributors to morphine’s
CO, e emissions.

= By quantifying morphine’s carbon footprint and
complementing this with a nation’s (UK’s)
annual morphine usage, we approximated mor-
phine’s total carbon footprint.

= The main areas of uncertainty for our study
relate to that for all LCAs, that is, reliance on
industry data for inputs beyond what we
obtained directly. Furthermore, we were unable
to compare the environmental footprint of mor-
phine in 10 mg glass phials (another common
preparation) as no companies were willing to
make their data available to us.

INTRODUCTION

Healthcare’s environmental effects are receiv-
ing increasing attention.! ? Life cycle assess-
ment (LCA) is a scientific method used to
calculate the entire ‘cradle-to-grave’ environ-
mental effects (‘footprint’) of a product or
process.” LCA has been used to estimate
healthcare’s entire ‘carbon footprint’, which
has been found to be responsible for 3% and
9.8% of the 2013 COy equivalent (‘COg €’)
emissions of England® and the USA®,
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respectively. The USA spends almost twice as much on
healthcare (17.1%) as a proportion of gross domestic
product (GDP) as the UK (9.1%).° Australian healthcare
COq e emissions are unknown, although healthcare costs
are similar to those of the UK (9.4% of GDP).°
Furthermore, Australian clinical practice broadly reflects
that in the UK, Europe and Canada, though it is less
financially costly than healthcare in the USA. In 2012,
the production of all pharmaceuticals used by the
National Health Service (NHS) of England contributed
>20% of the total COy e emissions (ie, all purchasing,
energy use and transport) arising from the NHS’s activ-
ities." Owing to this environmental footprint, the UK
NHS Sustainable Development Unit developed a guide-
line to perform pharmaceutical LCAs.’

LCAs exist for whole operations® "' and individual
devices,'*™!® but LCAs of drugs are rarely publicly avail-
able'® due primarily to the proprietary nature of drug
synthesis. Some published ‘in-house’ (commercial in
confidence) LCAs, however, have been performed by
drug (:ompanies.17 Most published LCAs of pharmaceuti-
cals examine only the technical aspects of drug manu-
facture.”®?° How drug ingredients are put together,
however, is less clear, and industry LCA publications
cannot be verified. A large majority of a drug’s environ-
mental effects are due to the manufacture of the actual
drug that doctors prescribe, compared with the produc-
tion of the precursor ingredients.”' It appears that the
production of all drugs collectively has a very large
carbon footprint,” ° although individual drug in-
formation is lacking. The primary aim of this study was,
thus, to know further about the entire environmental
effects of a drug as used by clinicians. We chose to study
morphine as it was a commonly used drug, known
worldwide, that Australia produced in considerable
quantities, and that could be studied with the collabor-
ation of supportive pharmaceutical companies.

Morphine is on the list of the WHO Essential
Medicines® and “remains the most widely used opiate
for the management of pain.”* In 20183, the global legal
production of the three most common opiates in des-
cending order were morphine 523 tonnes, codeine
361 tonnes and oxycodone 261 tonnes.** There are four
natural opiates derived from the opium poppy Papaver
somniferum: morphine and codeine, as well as thebaine
and oripavine (parent compounds to oxycodone and
buprenorphine, respectively).25 Direct chemical synthe-
sis of morphine has proved difficult,”” *° and production
via poppies remains the only commercial synthesis
route. Australia produces ~50% of the global supply of
licit opium poppy alkaloids (plant-based nitrogen-
containing organic compounds, such as morphine),
including 37% of the licit morphine, exporting to
Europe, the UK and elsewhere.**

We aimed to quantify all of morphine’s environmental
effects (COq e emissions=COqeq, water use, aquatic and
terrestrial pollution, etc), from opium poppy cultivation,
production of morphine sulfate and through to

intravenous formulation, including packaging. Kg
COgeq is the standard unit for measuring carbon foot-
prints and expresses the global warming potential of dif-
ferent greenhouse gases in ‘COs €’ that would create the
same amount of warming.27

Intravenous morphine in Australia is most commonly
prepared in 10 mg glass ampoules for bolus administra-
tion and as 100 mg in 100 mL bags for infusions and
patient-controlled analgesia. We were interested in the
environmental effects of both intravenous preparations.
We undertook a ‘cradle-to-gate’ LCA of morphine with
GSK (Glaxo Smith Kline) and Baxter, both large, inter-
national pharmaceutical companies. Three companies
in Australia produced 37% of the world’s licit morphine,
the majority of which (>25%) was produced by GSK.*®
Baxter did not manufacture morphine, but was the only
company that packaged and sterilised the 100 mg mor-
phine into 100 mL bags in Australia. A cradle-to-gate
LCA examines a product’s life cycle from the beginning
to its exit from the ‘factory gate’ and does not include
the syringes, intravenous fluid-giving sets, etc, used by a
clinician when administering the intravenous morphine
to the patient. Sun Pharmaceutical Industries purchased
GSK’s opiate production business in 2015. Since all data
were obtained from GSK, references are made to ‘GSK’
hereafter.

METHODS

Ethical approval for this LCA was granted by the
Western Health FEthics Committee (QA 2014.10),
Melbourne, Australia. The study was undertaken from
April 2014 to April 2016. Funding was obtained from the
Australian and New Zealand College of Anaesthetists
and Monash University. Researchers had access to all
data, which were obtained from (1) Tasmanian opium
poppy farms and GSK’s poppy pelletising facility, (2)
GSK’s opiate manufacturing facility in Victoria and (3)
Baxter’s intravenous manufacturing facility in Sydney.
No patients were involved in this study. The research
questions and outcome measures were developed
entirely by the investigators.

LCA is a scientific method that provides environmen-
tal modelling of the entire life of a product or process.3
In 1991, The Society for Environmental Toxicology and
Chemistry defined the six components to be analysed in
an LCA: (1) raw material acquisition; (2) processing and
manufacturing; (3) distribution and transportation; (4)
use, reuse and maintenance; (5) recycling and (6) waste
management.?’ The International Organization for
Standardization (ISO) has standardised how LCAs
should be performed (the ISO 14040 series).” We per-
formed a process-based LCA, that is, the environmental
effect was calculated for each product or service in the
life cycle based on measured inputs, such as electricity
or chemical usage.

Following the ISO 14040 Standards, an LCA must have
a System Boundary (figure 1), a clear a priori definition
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of what is and what is not to be included in the ana-
lysis.29 Following these standards,? all existent infrastruc-
ture required for morphine’s production (such as plant
equipment) lay external to the System Boundary. In con-
trast, anything that was used in the manufacture, trans-
port or delivery of morphine was examined; that is, (1)
raw material (plant-based products, eg, cellulose) extrac-
tion, (2) chemical reactions and solvents, (3) energy
use, (4) transport of all these agents and (5) associated
packaging and waste.

An LCA uses different types of data for modelling.
Some data are directly collected, for example, the
amount of electricity used by the morphine-
manufacturing facility. Most LCA data, however, are not
directly measured, but obtained from life cycle inventor-
ies calculated from many production sites as directly

measuring all data would make most LCAs unviable.
One example is all the inputs and outputs associated with
the production of 1kWh of electricity from brown coal
mining through to transmission. In this study, a hierarchy
of data sources has been used in the following descend-
ing order: (1) data collected from poppy growers, GSK
and Baxter Australia, (2) the Australian LCI database™
and (3) Ecolnvent V3 (European data).*! Modelling was
performed using the SimaPro 8 LCA software (PRé
Consultants, Amersfoort, the Netherlands).

In process-based LCA, ‘allocation’ is required when a
single process produces multiple outputs, so that environ-
mental effects can be allocated to each output. ISO
14044 (4.3.4.2 Allocation procedure)29 gives a stepwise
process in dealing with multi-output processes: (1) avoid
allocation through dividing processes, (2) allocate based

Figure 1
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System Boundary for morphine production. LCA, life cycle assessment.
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on physical relationships such as mass or (3) allocate by
other relationships, such as financial value.

There are two multi-output processes in morphine’s
manufacture by GSK: pelletising, which produces poppy
straw pellets (for opiates) and poppy seeds (for food),
and the concentrated poppy straw process, which pro-
duces morphine, codeine, oripavine and thebaine. We
were unable to avoid allocation by dividing the processes
(a single process provides poppy straw and seeds).
Furthermore, a physical relationship (mass) did not
capture the economic reality of why poppies were
grown. Farmers grew poppies for the opioid content,
not the poppy seeds—pharmaceutical companies were
not about to grow opium poppies so that they could
supply the food market. Therefore, we followed step 3 of
ISO 14044 and allocated based on the financial value.”
The environmental effects were allocated based on the
market value price (ie, price/kg multiplied by kg mass)
for each output. For each process, we calculated a
weighted average based on annual production data from
2012 and 2013, and this was modelled in SimaPro.

All modelling included an uncertainty value expressed
as a lognormal probability distribution derived from a
qualitative scoring system (the Pedigree Matrix).”* Each
input has uncertainty attributed to it from the qualitative
scoring system derived from the data’s reliability, com-
pleteness and temporal and geographical proximity,
with these uncertainties being included in all major
LCA databases. A final 95% CI for a process is achieved
based on the random sampling anywhere within the
95% ClIs for all inputs (Monte Carlo analysis). A Monte
Carlo analysis by the LCA modelling software includes at
least 1000 ‘runs’ of random samples to reduce the
chance of unusual results.

Impact assessment was performed using the ReCiPe
LCIA (Life Cycle Impact Assessment) method.™ The fol-
lowing impact categories (and their units) were calcu-
lated: climate change (g COs e); ozone depletion (kg
trichlorofluoromethane (CFC-11) equivalents); photo-
chemical oxidant (smog) formation (kg non-methane
volatile organic compound equivalents); and human, ter-
restrial and marine ecotoxicity (kg 1,4-dichlorobenzene
equivalents).

Normalisation is a method used to indicate the relative
importance of an impact category; we ‘normalised’ the
results for each impact category (ie, divided our results
by an average Australian’s per capita e emissions in each
category) as per ISO 14044.*” Normalisation takes into
account potential effects from national electricity and
fuel mixes. Per capita, Australia is a high emitter of
COgeq, which may appear to reduce the environmental
impacts of morphine production. Nevertheless, mor-
phine made in the UK, for example, would have a lesser
climate change impact (COgeq) than that made in
Australia due to the different electricity mix. A lesser
environmental impact, being compared to a lesser per
capita emission, may be comparable to the normalisa-
tion percentage of Australia.

Farming, pelletising and transport

Data for poppy cultivation and straw pelletising were col-
lected from the GSK Head of Crop Supply. We obtained
all data regarding opium poppy fertiliser, insecticides,
herbicides, tractor diesel use and irrigation water use for
a 2-year period (2012 and 2013). Road and domestic
shipping of poppy straw and international shipping of
chemicals to the farms were also examined.

Bulk morphine manufacture

Data from the manufacturing plant were obtained from
several sources. Production of concentrated poppy straw
(CPS) was a continuous process, but further manufac-
ture of the final morphine sulfate was by a batch
process. If a chemical was used only in the CPS process,
then the ‘Raw Material Spreadsheet’ that records entire
monthly chemical usage was used. If a chemical was
used in other processes, then data from a system used to
control and monitor process streams were used. Details
of use/reuse of chemicals (including solvents) and water
were obtained, including waste and sewage data.

For technical morphine (ie, 95% morphine by dry
weight) and morphine sulfate, exact chemical usage was
obtained through individual batch sheets, with these
recording all operating parameters, including input che-
micals, and operating time and temperature. We ran-
domly selected 30 batch sheets from each year of 2012
and 2013, and average values were calculated.

The GSK manufacturing facility monitored the electri-
city usage of individual equipment via an ‘Energy
Matrix’ computer system. The final morphine produc-
tion step, however, was not connected to the Energy
Matrix. We, thus, calculated associated electricity use by
multiplying the associated equipment’s energy ratings
with the respective operating times obtained from the
batch sheets.

Mixing, filling, sterilisation and packaging

The Baxter Sydney factory did not manufacture mor-
phine, but rather received bulk morphine sulfate, which
was packaged as 100 mg morphine into polyvinylchlor-
ide (PVC) plastic bags with 100 mL sterile 0.9% saline.
In 2015, Baxter Australia sterilised ~32 000 bags of mor-
phine for intravenous use. Each PVC bag was packaged
in high-density polyethylene (HDPE) plastic overpouch
bags and cardboard boxes. Box 1 indicates the routine
stages of production of morphine from these sources.
We were unable to obtain data regarding the environ-
mental effects of 10 mg glass ampoules despite repeated
requests to the manufacturers.

Baxter Australia purchased bulk morphine that did
not require further chemical modification. Owing to
contractual arrangements, the morphine received by
Baxter Australia was not directly sourced from GSK.
(GSK did supply Baxter with bulk morphine previously.)
We had access to all aspects of the preparation of
100 mg morphine in 100 mL bags by Baxter. Packaging
for 100 mg morphine required 16g of PVC as the
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Box 1 Stages of morphine sulfate production in Australia

(all directly examined in this life cycle)

Occurring in Tasmania

» Opium poppies grown in Tasmania, harvested and air-dried

» Dried poppy straw transported by road within Tasmania to be
pellitised, and also for producing poppy seeds for the food
industry

» Poppy pellets transported by ship to Melbourne, then by road
to the manufacturing facility in Victoria

Occurring at GSK, Victoria

» To produce concentrated poppy straw with 70-80% weight for
weight purity, morphine, along with codeine, oripavine and
thebaine, is extracted from the pellets in five stages:
— Aqueous extraction by filtration

Solvent extraction

Caustic extraction

Precipitation by pH adjustment

Separation

» Concentrated poppy straw is purified into technical morphine
(ie, 95% morphine by dry weight) through salt precipitation
to eliminate soluble impurities prior to converting it back to
morphine base

» Technical morphine is washed and filtered, resulting in dried
cakes

» Sulfuric acid is added to produce morphine sulfate (98% by
dry weight)

» Morphine sulfate is crystallised, filtered, dried and milled

Occurring at Baxter, Sydney

» Bulk morphine sulfate obtained by Baxter, Sydney

» Morphine sulfate mixed with 0.9% saline, and packaged into
polyvinylchloride plastic bags, pouches and cardboard boxes.

enclosing plastic bag, 9 g of HDPE plastic as the over-
wrapping pouch and a 9 g cardboard box (48 morphine
bags per 440 g cardboard box).

The majority of Baxter’s Sydney factory was devoted
to the manufacture of intravenous fluids. We appor-
tioned the relative amounts of mixing, filling, sterilisa-
tion and packaging required for morphine compared
with other relevant factory production lines (eg, 0.9%
saline 1 L bags) by comparing volumes of each produc-
tion line over the year 2015. Mixing was the addition of
bulk morphine to a heated, stirred salt solution (0.9%
saline) in large vats. Filling was the filling of PVC
plastic bags with the aqueous solution, containing
100 mg morphine. Sterilisation of these 100 mg mor-
phine bags occurred in large steam sterilisers. The
majority of the energy for the Baxter’s Sydney factory
was produced on site by gas trigeneration (providing
electricity, heating and cooling). A lesser amount of
the factory’s electricity was supplied from the New
South Wales electricity grid (primarily sourced from
black coal).

Packaging associated with a 10 mg morphine glass ampoule

We did not find a manufacturer willing to provide infor-
mation regarding the manufacture of 10 mg morphine
glass ampoules. Nevertheless, we did weigh the

packaging associated with such
ampoules at Footscray Hospital.

10 mg morphine

RESULTS

We completed a ‘cradle-to-gate’ LCA of morphine
sulfate from opium poppy farming (fertilisers, insecti-
cides and irrigation), poppy pelletisation, GSK’s bulk
morphine manufacture and Baxter’s sterilisation and
packaging. The environmental effects of producing
100 mg of morphine were compared with a commonly
identified activity (burning 1L of petrol). For all but
COs e emissions, ozone depletion and water use,
burning 1L of petrol had environmental effects which
were several orders of magnitude greater than those of
producing 100 mg of morphine. We have focused on
COs e emissions and provide further information
regarding other environmental impacts in online
supplementary table SI with associated documentation.
Only the details of COs e emissions are considered
further.

The climate change effects of producing 100 mg of
morphine were 204 g of COs (95% CI 186 to 264 g of
COy). Figure 2 shows the breakdown in the effects of
climate change (COgy e emissions) according to mor-
phine’s life cycle stages. Production of 100 mg of bulk
morphine (ie, from poppy farming and pelletising to
GSK’s bulk morphine) produced 24 g of COs (12% of
the total), while filling, mixing, sterilisation and pack-
aging produced 180 g of COg (88% of the total). The
average Australian is responsible for 18.3 tonnes of COq
per annum,” indicating that this 100 mg of morphine
producing 204 g of COq is ~0.4% of the daily per capita

Po rming
rphine
Mixing

Filling

® Poppy Farming (6g CO2, 3%) = Bulk Morphine (18g CO2, 9%)
Mixing (26g CO2, 13%) Filling (16g CO2, 8%)
m Sterilisation (43g CO2, 21%) ™ Packaging (95g CO2, 46%)

Figure 2 Greenhouse gas impacts (g CO, and %) by stage
of morphine’s life cycle (205 g CO, total). The individual
listing of the final steps in the process of morphine production
(mixing, filling, sterilising and packaging) indicates that they
are the most important contributors to morphine CO,
emissions.
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Australian COs e emissions and equivalent to the COq €
emissions of driving an average car ~1 km.*

Farming, pelletising and transport

The entire contribution from poppy farming, pelletising
and bulk morphine manufacturing was 24 g of COs,
which accounts for 12% of the total COs e (95% CI 22
to 27 g COy e). Poppy farming contributed 6 g of COy,
stemming particularly from nitrogen and phosphorus
fertilisers (3 g of COy) and farm machinery (2g of
COy). Diesel for farm machinery was much more
important to COs e emissions than all other aspects of
transport combined. Road, domestic shipping of poppy
straw and international shipping of chemicals to the
manufacturing facility contributed less than 0.2 g of
COs. Pelletising added only 0.5 g of COs.

Bulk morphine manufacture

The GSK morphine-manufacturing plant added 18 g of
COg, arising mainly from the electricity (9 g of COo)
and chemicals (solvents, acids and alkalis and filter aids;
4 g of COy) used. By process at the GSK factory, the COq
e emissions from the production of concentrated poppy
straw predominated (10g of COy), followed by mor-
phine sulfate (4 g of COy) and technical morphine (ie,
95% morphine by dry weight) production (4 g of COy).

Mixing, filling, sterilisation and packaging

The final processes of morphine production (mixing,
filling, sterilising and packaging) at Baxter’s Sydney
manufacturing plant contributed 181/205 g COy (88%)
to 100 mg morphine’s total COq footprint. Mixing (26 g
of COy), filling (16 g of CO9) and sterilisation (43 g of
COy) of 100 mg of morphine bags added 85 g of COs,
which is 42% of the total COge (95% CI 80 to 92g
COseq). Morphine’s packaging contributed the largest
amount to COy e emissions for any process, 95 g of COs,
which is 46% of the total (95% CI 82 to 155 g COge).

If Baxter’s Sydney factory had used natural gas for
heating/sterilising and the New South Wales’ electricity
grid for other energy requirements instead of gas trigen-
eration, the COy e emissions for a 100 mg morphine
pouch would have been ~228 g of CO,. Packaging for
100 mg morphine required 16 g of PVC as the enclosing
plastic bag, a 9 g polyethylene overwrapping pouch and
a 9 g cardboard box.

Packaging associated with a 10 mg morphine glass ampoule
We estimated that the packaging masses associated
with 10 mg morphine ampoules were: one glass
ampoule (1.9 g), one plastic polypropylene tray (0.6 g)
and one cardboard and paper (1.8 g). In looking at
the environmental effects of the packaging only this
contributed 6.9 g of COy, that is, more than twice the
COq e emissions of the 10 mg bulk morphine (2.4 g of
COgq or 1/10th of 24 g of COs from 100 mg of bulk
morphine) itself.

DISCUSSION

We examined the environmental effects of producing
morphine, from opium poppy cultivation through to the
final packaged drug. The environmental effect of produ-
cing 100 mg of morphine was 204 g COy e for climate
change. Other environmental effects examined were
considerably smaller than burning 1 L of petrol for car
transport, except for ozone depletion, though even this
was just 0.04% of the ozone-depleting effects arising
from an average Australian’s daily activity (see online
supplementary table S1). Importantly, almost 90% of
morphine’s carbon footprint arose from the final stages
of production; steam sterilisation added 20% to the
total, while packaging alone contributed almost half.
The combined carbon footprint of poppy farming and
bulk morphine manufacture was modest (12%).
Contrasting with prior studies of non-specific drug pro-
duction,18 36 chemicals (such as solvents, acids and
alkalis) were not large contributors to morphine’s COs e
emissions.

To give some perspective to our findings, the carbon
footprint of the manufacture of 100 mg of morphine
(204 g of COy) is similar to that of a single use plastic
anaesthetic drug tray,'* or driving an average Australian
car 1 km.” We deliberated what the wider environmen-
tal ‘carbon impact’ of a nation’s morphine production
would be, but caution that such considerations would
likely be inaccurate due to the lack of robust data. The
total UK requirements for morphine in 2015 were esti-
mated to be 6498 kg,24 which (if entirely intravenous)
would lead to 13 250 tonnes of COs e emissions. While
this is an overestimation (ie, less COs would be pro-
duced from oral morphine), the COs e emissions of
intravenous morphine production would be equivalent
to an annual usage of 4400 average Australian cars.”

The UK’s Sustainable Development Unit found that
~20% of the entire carbon footprint of the England’s
National Health Service was due to drug production and
use. There are differences in the methods of input-
output LCAs’ compared with our process-based LCA.
Essentially, an input-output LCA is based on the finan-
cial transactions between sectors in the economy, calcu-
lating carbon and other environmental impacts for each
sector, and associating this with their final financial
value (eg, kgCOy/£). The purchase costs for morphine
for the English NHS as a proportion of the total
pharmaceutical purchases for England in 2014 were £44
million of £8.9 billion®’ (ie, 1/250th or 0.4%).

No companies were willing to make their data avail-
able to us for morphine in 10 mg glass phials. Belboom
et al® studied the life cycle effects of injectable drug
packaging only (%ot the drug itself), finding that a 1 mL
glass phial filled with an unidentifiable sterile drug pro-
duced 65 g of COy, and “the major source of energy
consumption comes from cleaning the glass vial compo-
nents.” Using Belboom’s study™ as a proxy for final for-
mulation, if 10 mg of our bulk morphine (1/10th of 24 g
CO9=2.4 g COy) was filled in a glass phial, the related
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COy e emissions would be 65 g+2.4 g=67.4 g COy, with
the phial and final formulation contributing 96%, and
the bulk morphine sulfate 4%. Such results are in the
same order of magnitude to our findings, but we
caution close interpretation. Even if morphine’s environ-
mental footprint was exceptionally low compared to that
of other pharmaceuticals, the final drug production
stages and packaging are likely to have the largest
environmental effects for most drugs.

Publically available studies of the life cycles of identifi-
able drugs are rare. A recent cradle-to-grave LCA of
anaesthetic gases by Sherman ef al. examined drugs
using SciFinder™ (CAS web-based chemistry database,
American Chemical Society, USA) as direct data were
unavailable from the manufacturers. Drug synthesis
pathways, however, change as the drug manufacturing
process evolves from laboratory scale to full production,
and the environmental effects can change
considerably.”’

Wernet et aF' studied the entire synthesis of a
de-identified active pharmaceutical ingredient and
found that its life cycle produced 68 g of COy/g drug.
Wernet’s study did not include the final sterilisation pro-
cesses nor packaging. Our study found that bulk mor-
phine (ie, not including sterilisation and packaging)
produced 240 g of COy/g morphine, considerably more
than Wernet’s unidentified drug. We caution though
that there may be considerable variation in processing
between different drugs.

Our cradle-to-gate LCA of all processes required to
produce intravenous morphine found that the COy/g
was ~2040 g of COy9/g morphine. Although the ‘COq
intensity’ of morphine is much greater (per gram) than
for packaging, such packaging produces greater COs €
emissions due to the 100-fold greater masses involved.
Our study adds weight to concerns that packaging may
add greatly to the life cycle effects of many hospital pro-
ducts.” We were unable to estimate the environmental
effects of oral morphine tablets, though this is likely to
be less than intravenous preparations due to the lesser
disinfection needs,41 and reduced packaging require-
ments (we did not include the environmental effects of
the plastic ‘giving set/drip’).

According to our study, it was challenging to identify
rapid, inexpensive improvements in the environmental
effects of production of morphine. Recently, GSK
Victoria undertook extensive water and energy reduction
programmes, saving 30 million litres of water annually
through reuse, and reduced electricity consumption by
30%. Furthermore, Baxter Sydney’s factory already
sourced its energy primarily from gas trigeneration, sup-
plemented by the New South Wales electricity grid and a
recently installed 500 kW solar photovoltaic system.
Perhaps, we have underestimated the environmental
effects of drug production since GSK and Baxter act
with resource conservation in mind. Yet, even if Baxter
Australia’s energy source was natural gas and the New
South Wales electricity grid, this would lessen 100 mg of

morphine’s related COy e emissions by only ~10-15%.
Yet, because of the importance of sterilisation and pack-
aging, efforts to improve steriliser efficiencies and redu-
cing/recycling cardboard/plastic packaging are worth
exploring (eg, initiatives to recycle PVC plastic),42 par-
ticularly in the setting of carbon reduction targets.

We have shown from our study of 100 mg of morphine
in plastic bags that ‘commercial in confidence’ concerns
by pharmaceutical companies to LCA can be solved
through collaboration leading to robust, publicly avail-
able data. Nonetheless, we were unable to obtain data
regarding 10 mg of sterile morphine ampoules. As clini-
cal end users of pharmaceuticals, it is incongruous that
we are unable to obtain information regarding the envir-
onmental effects of drugs we are administering to
patients, and concerted advocacy efforts by medical col-
leges and associations to ask for such information from
pharmaceutical companies could assist further research.

The environmental footprint of a 100 mg bag of mor-
phine was small compared to many other processes and
items used in hospitals, but nevertheless important when
considering worldwide pharmaceutical use. Most (90%)
of morphine’s carbon footprint arose from the latter
stages of production, particularly packaging and sterilisa-
tion. The environmental effects of fentanyl (another
widely used opiate) for comparison with those of mor-
phine are required to begin to provide informed, ‘envir-
onmentally aware’ drug choices. The relative
environmental footprints of oral versus intravenous phar-
maceuticals also warrant attention. The environmental
effects of drug distribution, storage, use by clinicians
(including syringes) and hospital waste disposal also
require exploration. The pharmaceutical industry could
reduce its carbon footprint through greater energy effi-
ciencies and use of renewables. Improved drug pack-
aging and augmented recycling are also needed.
Clinicians and government purchasing agencies could be
empowered to have LCA data to choose drugs and other
products based on their environmental footprint.' **
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